Eosinophil peroxidase increases membrane permeability in mammalian urinary bladder epithelium.

نویسندگان

  • Teri J Kleine
  • Gerald J Gleich
  • Simon A Lewis
چکیده

Eosinophil peroxidase (EPO), a cationic protein found in eosinophils, has been reported to be cytotoxic independent of its peroxidase activity. This study investigated with electrophysiological methods whether EPO is toxic to mammalian urinary bladder epithelium. Results indicate that EPO, when added to the mucosal solution, increases apical membrane conductance of urinary bladder epithelium only when the apical membrane potential is cell interior negative. The EPO-induced conductance was concentration dependent, with a maximum conductance of 411 μS/cm2 and a Michaelis-Menten constant of 113 nM. The EPO-induced conductance was nonselective for K+ and Cl-. The conductance was partially reversed using voltage but not by removal of EPO from the bulk solution. Mucosal Ca2+reversed the EPO-induced conductance by a mechanism involving reversible block of the conductance. Prolonged exposure (up to 1 h) to EPO was toxic to the urinary bladder epithelium, as indicated by an irreversible increase in transepithelial conductance. These results suggest that EPO is indeed toxic to urinary bladder epithelium via a mechanism that involves an increase in membrane permeability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACELL Mar. 45/3

Kleine, Teri J., Gerald J. Gleich, and Simon A. Lewis. Eosinophil peroxidase increases membrane permeability in mammalian urinary bladder epithelium. Am. J. Physiol. 276 (Cell Physiol. 45): C638–C647, 1999.—Eosinophil peroxidase (EPO), a cationic protein found in eosinophils, has been reported to be cytotoxic independent of its peroxidase activity. This study investigated with electrophysiologi...

متن کامل

Eosinophil major basic protein increases membrane permeability in mammalian urinary bladder epithelium.

The eosinophil granule protein major basic protein (MBP) is toxic to a wide variety of cell types, by a poorly understood mechanism. To determine whether the action of MBP involves an alteration in membrane permeability, we tested purified MBP on rabbit urinary bladder epithelium using transepithelial voltage-clamp techniques. Addition of nanomolar concentrations of MBP to the mucosal solution ...

متن کامل

Single anion-selective channels in basolateral membrane of a mammalian tight epithelium.

Basolateral membrane chloride permeability of surface cells from rabbit urinary bladder epithelium was studied using the patch-clamp technique. Two types of anion-selective channel were observed. One channel type showed inward rectification and had a conductance of 64 pS at-50 mV when bathed symmetrically by saline solution containing 150 mM chloride; the other resembled high-conductance voltag...

متن کامل

The Anatomic Site of the Transepithelial Permeability Barriers of Toad Bladder

An examination of the mucosal epithelium of the urinary bladder of the toad reveals that the two major cell types which abut on the urinary surface, the granular and mitochondria-rich cells, also contact the basement membrane. Thus, the epithelium functions as a single cell layer. Although basal cells are interpolated between the granular cells and the basement membrane over a large portion of ...

متن کامل

Correlation between Pinocytosis and Hydroosmosis Induced by Neurohypophyseal Hormones and Mediated by Adenosine 3',5'-cyclic Monophosphate

The isolated urinary bladder of the toad responds to neurohypophyseal hormone with a net increase of water transport from the mucosal to the serosal solution in the presence of an osmotic gradient. This response is mediated intracellularly by cyclic 3',5'-adenosine monophosphate (AMP). The present study demonstrates that hydroosmotically active substances such as oxytocin, dibutyryl cyclic 3',5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 276 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1999